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LETTER TO THE EDITOR

Effective viscosity due to local turbulence interactions near the
cutoff wavenumber in a constrained numerical simulation

A J Young and W D McComb
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, UK

Received 22 December 1999

Abstract. If the largest resolved wavenumber in a numerical simulation of isotropic turbulence
is too small, then it is well known that the energy spectrum will depart from its expected monotonic
decrease with increasing wavenumber and will instead begin to increase. We show that an
operational method is capable of modifying the instantaneous velocity field such that the unphysical
features of the spectrum are suppressed. When the effect on the constrained simulation is interpreted
in terms of an effective viscosity, this agrees well with the usual result obtained by comparison with
a fully resolved direct numerical simulation, thus directly establishing the localness in wavenumber
of the relevant interactions.

The numerical simulation of systems with many degrees of freedom has been of great interest
in physics for some time and in practice there is often a requirement to reduce the number of
degrees of freedom which have to be explicitly simulated. In fluid dynamics, the recognition
that numerical simulation could be employed if one reduced the number of degrees of freedom
goes back to meteorological work in the 1960s, when the idea of a large-eddy simulation (LES)
was first put forward.

In applying the concept of LES to spectral simulations, the conventional approach is to
resolve Fourier modes with wavenumbers up to somek = KC , and to model the nonlinear
transfer to the (now nonexistent) modes withk > KC by means of some additional viscosity
acting on the resolved modes. In general, one may expect an effective viscosity of this kind
to depend on both the local wavenumberk and on the cutoff wavenumberKC . (Also one may
expect some other nonlinear effects to be present, in addition to the Newtonian-type effective
viscosity.) In this letter we introduce a novel method of compensating for the absence of
nonlinear transfers, which also establishes the localness in wavenumber of the interactions.

We study the numerical simulation of stationary, homogeneous, isotropic turbulence of
an incompressible fluid [1–9], and work in Fourier wavenumber space, where the degrees of
freedom are the Fourier modesu(k, t) of the velocity field as defined in terms of the velocity
fieldu(x, t) by

u(x, t) =
∑
k

u(k, t)eik·x. (1)

In this situation, the main quantity of interest is the energy spectrum, as given by

E(k, t) = 2πk2〈u(k, t) · u(−k, t)〉 (2)

where〈· · ·〉 denotes an ensemble average.
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It is conventional to use an effective viscosity to represent the effect of high-kmodes. This
has its origins in the work of Heisenberg [10]; but it was Kraichnan [11] who first expressed
the eddy viscosity as

δν(k) = − TC(k)

2k2E(k)
(3)

whereTC(k) represents energy transfers due to interactions with unresolved modes. Kraichnan
used an analytical turbulence theory—the test-field model—to obtain an eddy viscosity which
exhibited the now familiar characteristics of a constant asymptotic value fork � KC and a
cusp atk = KC , and this approach inspired much other work of this type. The qualitative
form of this eddy viscosity was first established by Domaradzkiet al [12], who introduced an
artificial cutoff into the data obtained from a fully resolved numerical simulation.

We have carried out a numerical simulation with a resolution ofN = 256 and at a Taylor–
Reynolds number ofRλ ≈ 190. For this simulation we chose the fluid kinematic viscosity
to beν = 10−3 with dissipation rateε = 0.149 (in arbitrary units), givingLB/L(t) ≈ 5
where the computational box side isLB and the integral length scale isL; andKmax/kd ≈ 1.2,
wherekd is the Kolmogorov dissipation wavenumber. These values are reasonably well in line
with current practice [2]. The forcing, which is necessary to maintain a steady state, takes the
following form:

f(k, t) =
{
εu(k, t)/(2Ef (t)) if 0 < k < kf

0 otherwise
(4)

whereEf (t) is the energy contained within the forced modes andkf = 1.5. This forcing
scheme is the same as that used by Machiels [13].

The idea underlying the procedure introduced in this paper may be explained by first
considering what happens in a truncated simulation where the maximum wavenumber is
significantly less than the dissipation wavenumber. As is well known, one of the most obvious
effects of such a truncation is an upturn at the high-wavenumber end of the energy spectrum,
corresponding to a local build up of energy. This is illustrated in figure 1 where we have plotted
an energy spectrum taken from a truncated (i.e. unresolved) simulation after several integration
steps. Our aim is to locate this upturn and to correct it in some way. In general terms, the
proposed strategy may be described as follows. First, we identify the onset of the upturn with
the minimum of the derivative, d(lnE)/d(ln k), and denote the corresponding wavenumber by
k = kupturn. Second, we use the value of this derivative atkupturn to generate a corrected energy
spectrum by extrapolating forward from this point. The intended result of this operation is
shown in figure 1 as a dashed line. We note that, although our present method is believed to
be new, the idea of conducting such direct experiments on a numerical simulation is now of
growing interest [14–19]. In particular, there is quite a close similarity of approach between
our method and the ‘constrained Euler’ method of She and Jackson [14], and we shall enlarge
on this when we come to the discussion of results.

The following algorithm was carried out after each time-integration step:

(1) A smoothed spectrumES is obtained by fitting a polynomial in lnk to lnE, whereE(k) is
the usual energy spectrum obtained from the velocity field by shell averaging. A fourth-
order polynomial was used for this, as it was found that lower orders do not reproduce the
upturn, while significantly higher orders follow the spectrum too closely to give adequate
smoothing.

(2) The minimum of the derivative, d(lnES)/d(ln k), is obtained analytically.
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Figure 1. An energy spectrum with an upturn (crosses), its derivative, d(lnE)/d(ln k) (triangles)
and a schematic indication of what the corrected energy spectrum should look like after application
of the operational feedback procedure (dashed curve). The vertical solid and dot-dashed lines
indicate the positions ofkupturn andKC , respectively.

(3) The gradient, d(lnES)/d(ln k) = 0, atk = kupturn is used to extrapolate the original shell-
averaged spectrum,E, forward in wavenumber fromkupturn in order to give the corrected
spectrum:

EC(k) =
{
E(k) if k 6 kupturn

E(kupturn)(k/kupturn)
0 if k > kupturn.

(5)

(4) The ratio of the corrected spectrum to the shell-averaged spectrum then provides the basis
for a correction of the velocity field, thus

uC(k) = u(k)
√
EC(k)/E(k). (6)

As a first test for this procedure, we compared three cases: a resolved simulation with
N = 256, an unresolved simulation withN = 64 (i.e. without compensation for the missing
modes) and a compensated simulation withN = 64 (following the procedure outlined above).
All simulations were allowed to run for approximately 24 evolved eddy turnover times.

In figure 2 we have plottedkupturn/KC against time, showing values corresponding to every
25 integration time steps. We see that it appears to fluctuate around a value ofkupturn/KC ≈ 0.6,
and we note a period of rapid fluctuations between 12 and 18 eddy turnover times.

Figure 3 shows the evolution with time of the total energy for each of the three simulations.
It may be seen that the fluctuations in the case of the unresolved ‘control’ simulation were
larger than in the other two cases, but otherwise there is no significant difference of behaviour.
The mean values found by averaging over time, with error estimates given by twice the standard
deviation, were: resolved simulation withN = 256,E = 0.90± 0.04; unresolved simulation
withN = 64,E = 0.96±0.12; and compensated simulation withN = 64,E = 0.89±0.03.
Evidently, despite the large number of eddy turnover times, there is no significant difference
between the mean levels (the fluctuations are a different matter).

However, when one considers the ‘microscopic’ aspects, the picture is quite different.
Energy spectra, time averaged over the final 15 eddy turnover times of the simulations, are
given in figure 4. Here, the problems in the unresolved simulation are clearly seen, with
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Figure 2. kupturn/KC plotted as a function of time. A value ofkupturn = KC indicates that the
operational method has not amended the velocity field in any way. The time axis has been scaled
on τE , the eddy turnover time.

Figure 3. Evolution of total energy showing the results from the resolved 2563 simulation (circles),
the unresolved 643 simulation (crosses) and the compensated 643 simulation (diamonds).

the upturn dominating the energy spectrum. In contrast, the spectrum obtained from the
compensated simulation, shows a good match with that obtained from the resolved simulation.

We have also investigated the effect of this feedback procedure on the velocity derivative
skewnessS(t). The time-averaged value obtained from the resolved simulation, with an
estimate of the error (given by twice the standard deviation) isS = −0.50±0.07 in agreement
with experiment [20]. However, as noted by Duboiset al [19], the simple act of truncating
a velocity field in Fourier space—and hence removing the small scales—will in itself cause
a reduction in the skewness and this is inevitable with any variety of LES. Therefore, in
order to make a fair comparison with the results of our two 643 simulations, we have also
computed the skewness based on a number of truncated 2563 velocity fields. This gave a
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Figure 4. Average evolved energy spectra, showing the results from the resolved 2563 simulation
(circles), the unresolved 643 simulation (crosses) and the compensated 643 simulation (diamonds).

value of S = −0.33± 0.04. The unresolved simulation withN = 64 gave a value of
S = −0.12± 0.04, indicating a distribution closer to the Gaussian case than for the resolved
2563 result, while the compensated simulation gave a value ofS = −0.30±0.05 in agreement
with the result obtained from the truncated 2563 fields. Similar results were found by She and
Jackson [14], who obtainedS = 0.31± 0.03 from a truncation of a fully resolved simulation
andS = 0.28± 0.03 from their ‘constrained Euler’ simulation.

It is possible to interpret the compensated simulation presented here in terms of the usual
spectral LES by generating an effective eddy viscosity,δν(k, tn), at each time step, which
would give an enhanced dissipation rate equivalent to the rate of energy removal due to the
operational procedure. It is readily shown that in going fromtn to tn+1 this takes the form:

δν(k, tn) ≡ E(k, tn+1)− EC(k, tn+1)

2k2δtE(k, tn)
. (7)

The time-averaged result is plotted in figure 5 alongside an empirical eddy viscosity, computed
from a resolved velocity field in the same way as by Domaradzkiet al [12].

The significance of such agreement is that it establishes the localness in wavenumber
space of the relevant interactions, in momentum transfer as well as energy transfer. It is,
of course, quite usual toassumethat such interactions are local. For instance, Domaradzki
et al [12], refer twice to their results as indicating the importance of local interactions. Yet in
principle both the momentum (Navier–Stokes) equation and the energy conservation equations
are highly nonlocal in wavenumber. In this work, a direct action on the velocity field at a given
wavenumber produces an effective viscosity at that wavenumber but affects the spectrum
nowhere else. Thus the relevant nonlinear transfers are indeed local.

It is also worth noting that some implementations of the operational procedure resulted
in a net energy gain and this would imply occasional negative values for the instantaneous
viscosity. However, it may be seen that the time-averaged effective viscosity is generally
positive, except at wavenumbers where there was forcing.

We note that the ‘constrained Euler’ simulation [14] could also be interpreted in terms of
such a viscosity (although as no results for this were given, we are unable to make a detailed
comparison) and that these authors concluded that their simulation was equivalent to a LES
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Figure 5. Average equivalent eddy viscosity computed from the compensated 643 simulation
(curve) compared with the ‘empirical’ eddy viscosity computed from the resolved 2563 simulation
(circles).

of the Navier–Stokes equations. There are various detailed differences between our method
and that of She and Jackson [14]. For instance, we constrain modes only where deviation
is noted, which in practice is always near the cutoff wavenumber, whereas they constrain all
resolved modes. However, the similarity of approach and (so far as we can tell) results is very
interesting and we hope to elucidate these matters in further work.

The operational procedure outlined here gives interesting results at the relatively low
Reynolds number we have explored. However, it must be borne in mind that it depends on an
assumption about the form taken by the spectrum, if we truncate the high-wavenumber modes.
Under the present restricted circumstances, there is only one possible outcome. In the absence
of nonlinear transfer to higher-k modes, the energy must increase at the cutoff wavenumber.
This guarantees the stability of the feedback process. However, we should remind ourselves
that although this is true for the simple spectral method used here, and for isotropic turbulence,
it is not necessarily true for more realistic flows. This is a matter which would require further
investigation.
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